
 The “Buffon's needle” problem

“Buffon's needle” is a known problem with many mathematical and statistical features of both theo​retical and practical nature. We are not going to bring out anything new, how​ever we will stress some of the simulation ideas and some graphs to illuminate the prob​lem. There is a large amount of information on the Internet and a use of some searching device will yield many hits. 

The needle problem concerns the throwing of a short stick (needle, pin, etc) on a flat sur​face that has a number of parallel lines. The question is: what is the probability that the stick crosses a line? From this probability we can estimate the famous number . Clearly the answer depends on the relationship between the distance between the lines and the length of the stick. (Also, the reader might ask why we need to estimate this number when it is now known with any kind of wanted accuracy.)

For the sake of completeness we add and develop some of the mathematical formulas, but anyone who wants to skip the mathematics can do so without loss of understanding.

(We suggest that the reader run the %Pi-macro a few times and also read section 10.3.8 in the binder 'A course in statistics'.)

(The use of good graphs is a very underestimated way of conveying information. Anyone interested in using numerical data should always try to find means to show a message via a graph or a picture. A good graph is nothing that is compiled in a matter of seconds or minutes using a PC-program. The researcher should put himself in the position of the reader and ask, time and time again, if the message is understandable and gives another insight or dimension of the problem at hand.)

Suppose that we throw a needle on a plane having parallel lines. The length of the needle is half the distance between the lines. We throw the needle a number of n times and count the number of times the needle crosses any line. We call this number k. From this we can state the following (based on some theory shown on last page):
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	This approximation becomes better for higher n.
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	The figure shows a needle thrown on a plane with parallel lines, the distance d apart.

x shows the distance from a line to the point of gravity of the needle. This distance is considered a random variable uniformly distributed on [0, d].

The angle  is likewise distributed on [0, 90°].


Call the distance between the parallel lines d. The length of the needle we choose to d/2 and x is the distance between the centre of the needle from, say, the zero-line. Then we can state the following (which can be verified by some mathematics):

	If
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	the needle crosses the 0-line
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	the needle crosses the d-line.


From a uniform distribution we choose the x-value ([0, d]) and from another uniform distri​bution we choose the angle i.e. the -value ([0, 90°] which is the interval [0, /2] when expressed in radi​ans). By some simple mathematics we calculate the two state​ments and check if the needle crosses any of the two lines. Every such crossing is accu​mu​lated and again using some mathematics we get an estimate of .

Something about the uniform distribution (see also %CLT, fig 1)

In this document we use the so-called uniform distribution for simulation purposes. There are two types of such distributions: the discrete uniform distribution (usually integers such as outcome from throwing an ordinary die) or a continuous uniform distribution. Both these can take values from the negative as well as the positive part of the number line. A simulation:

let k1 = 10000             # 10000 numbers.

name c1 'Unif -6.1 to 5.1' c2 'Integer -3 to 4'

random k1 c1;              # k1 values uniformly distributed

uniform -6.1 5.1.          # between -6.1 and 5.1 ('a' and 'b').

random k1 c2;              # k1 integer values in the range -3 to 4.

integer -3 4.              # (call these values 'c' and 'd'.)

histogram c1 c2            # Makes a histogram of the data.

describe c1 c2             # Numerical description of the data.

Note that  = (a + b)/2,  = sqrt[(a - b)2/12] and  = (c + d)/2,  = sqrt[((b - a + 1)2 - 1)/12] respectively. Calculate and compare to 'Mean' and 'Std Dev' on the printout.

Graph (I) - all throws as black dots

Before we continue with the problem we perform a simulation and draw a simple graph. 

let k1 = 10000             # 10000 throws of a needle.

let k2 = 4                 # Distance between lines.

let k3 = 2                 # The length of the needle.

random k1 c1;              # Random positioning of point of

uniform 0 k2.              # gravity of needle between lines.

random k1 c2;              # Random angle of needle between 0

uniform 0 1.5708.          # and 90 degrees (1.5708 radians).

plot c1*c2;                # 'point of gravity' against angle.

wtitle 'Graph (I) - all throws as black dots'; # Title of window.

symb;

size 0.4;

axlabel 1 'Angle 0 - 90 degrees (0 - 1.5708 radians)';

tsize 0.7;

axlabel 2 'Position of point of gravity of needle';

tsize 0.7;

Scale 1;

tsize 0.6;

length 0.005;

HDisplay 0 0 0 0;

Scale 2;

length 0.005;

tsize 0.6;

HDisplay 0 0 0 0;

nodt;
data;

etype 0;

title 'A dot represents one throw of a needle';

tsize 1.1;

title 'Each dot shows the position of the point of gravity and the angle of the needle';

tsize 0.9;

tcolor 4;

footnote 'Graph (I) - all throws as black dots';

tsize 0.7.

Of course, we do not find any relationship between the Y- and the X-variable. Both these were simulated independently of each other and from uniform distributions. 

Some questions: what proportion of the 10000 throws did cross a line? Will the throws crossing a line create any pattern in the plot above? We will investigate these questions in the next graph.

Graph (II) - points crossing a line as red dots

Here we will mark those dots, representing throws that cross a line, with a red dot. We do this in the following way. (For the sake of convenience we repeated all commands.)

name k4 'prop crossing a line'

let k1 = 10000             # 10000 throws of a needle.

let k2 = 4                 # Distance between lines.

let k3 = 2                 # The length of the needle.

random k1 c1;              # Random positioning of point of

uniform 0 k2.              # gravity of needle between lines.

random k1 c2;              # Random angle of needle between 0

uniform 0 1.5708.          # and 90 degrees (1.5708 radians).

# c3 will contain a '0' if any tip of the needle crosses

# any line (c3 will contain '1':s otherwise).

let c3 = ((c1 - k3/2*sin(c2) < 0) or (c1 + k3/2*sin(c2) > k2))

let k4 = sum((c1 - k3/2*sin(c2) < 0) or (c1 + k3/2*sin(c2) > k2))/k1

let c4 = c3 + 1            # c4 contains the colour of the dots in

                           # the next plot. A red dot means that

                           # the combination of position of point

                           # of gravity and angle cross the line.

                           # A black dot means that the tip did not

                           # cross a line.

plot c1*c2;                # 'point of gravity' against angle.

wtitle 'Graph (II) - points crossing a line as red dots';

symb;

size 0.4;

color c4;

axlabel 1 'Angle 0 - 90 degrees (0 - 1.5708 radians)';

tsize 0.7;

axlabel 2 'Position of point of gravity of needle';

tsize 0.7;

Scale 1;

tsize 0.6;

length 0.005;

HDisplay 0 0 0 0;

Scale 2;

length 0.005;

tsize 0.6;

HDisplay 0 0 0 0;

nodt;
data;

etype 0;

title 'A dot represents one throw of a needle';

tsize 1.1;

title 'Each dot shows the position of the point of gravity and the angle of the needle';

tsize 0.9;

tcolor 4;

title 'Red dots indicate thrown needles that cross one line of the surface';

tsize 0.9;

tcolor 4;

footnote 'Graph (II) - points crossing a line as red dots';

tsize 0.7.

print k4                  # The prop crossing a line.

The plot contains two areas with red dots. Obviously the true, theoretical proportion 'crossing a line' must be close to the following ratio (stored in the constant k4 above):
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(We will later calculate the theoretical proportion as the ratio between areas in the plot.) We see also that the red dots in the plot create a certain pattern. Why does the pattern look that way? This can be explained in the following way. At low angles, i.e. the thrown needle is approxi​mately parallel to the lines of the surface, the point of gravity has the largest possibility to vary. This fact corresponds to the left side of the plot. On the other hand, when the needle lands with an angle more or less perpendicular to the lines, the point of gravity has much less freedom to vary without crossing a line.

So far the length of the needle has been half the distance between the lines. And obviously the ratio between the length of the needle and the distance between the lines is important for the probability of crossing. What happens if the distance between the lines is large compared to the length of the needle? What happens if the distance between the lines is small compared to the length of the needle? 

Graph (III) - different ratio between distance between lines and length of needle

Copy the commands above but change the command (distance between lines) “let k2 = 4” to 6, 10 and 14 before running the result. The plots will show different proportions of red dots and the result will be similar to this table:


k2
Calculated proportion (result from one simulation)

6
0.2193


10
0.1286


14
0.0899

We see that when the distance between the lines becomes larger, the proportion of crossing a line becomes smaller.

Extra exercise (I).  The reasoning above means that when the distance between the lines is exactly the same as the length of the needle the two red areas join exactly at the right end of the plot. This seems reasonable as the angle of the needle is then 90 degrees which leaves no room for variation of the point of gravity if crossing of a line is to be avoided.

1. Copy the commands under the section 'Graph (II)…'.

2. Paste the content in the session window or the window of the 'Command Line Editor'.

3. Change the length of the needle to 4 (“let k3 = 4”).

4. Execute the commands.

(NB that the red dots might cover the few black ones near the right end of the plot, then giving the impression that the black area is not reaching the very right end.)

Above we have let the angle vary between 0 and 90 degrees. What happens if we use the range 0 - 180 degrees instead? We do this in the next plot.

Graph (IV) - the angle varies between 0 and 180 degrees

In order to investigate what happens if we let the angle vary between 0 and 180 degrees (i.e. 0 and 3.14 radians) we change the subcommand “uniform 0 1.5708” to “uniform 0 3.14”. 

name k4 'prop crossing a line'

let k1 = 10000             # 10000 throws of a needle.

let k2 = 4                 # Distance between lines.

let k3 = 2                 # The length of the needle.

random k1 c1;              # Random positioning of point of

uniform 0 k2.              # gravity of needle between lines.

random k1 c2;              # Random angle of needle between 0

uniform 0 3.14.            # and 180 degrees (3.14 radians).

# c3 will contain a '0' if any tip of the needle crosses

# any line (c3 will contain '1':s otherwise).

let c3 = ((c1 - k3/2*sin(c2) < 0) or (c1 + k3/2*sin(c2) > k2))

let k4 = sum((c1 - k3/2*sin(c2) < 0) or (c1 + k3/2*sin(c2) > k2))/k1

let c4 = c3 + 1            # c4 contains the colour of the dots in

                           # the next plot. A red dot means that

                           # the combination of position of point

                           # of gravity and angle cross the line.

                           # A black dot means that the needle did

                           # not cross a line.

plot c1*c2;                # 'point of gravity' against angle.

wtitle 'Graph (IV) - the angle varies between 0 and 180 degrees';

symb;

size 0.4;

color c4;

axlabel 1 'Angle 0 - 180 degrees (0 - 3.14 radians)';

tsize 0.7;

axlabel 2 'Position of point of gravity of needle';

tsize 0.7;

Scale 1;

tsize 0.6;

length 0.005;

HDisplay 0 0 0 0;

Scale 2;

length 0.005;

tsize 0.6;

HDisplay 0 0 0 0;

nodt;
data;

etype 0;

title 'A dot represents one throw of a needle';

tsize 1.1;

title 'Each dot shows the position of the point of gravity and the angle of the needle';

tsize 0.9;

tcolor 4;

title 'Red dots indicate thrown needles that cross one line of the surface';

tsize 0.9;

tcolor 4;

footnote 'Graph (IV) - the angle varies between 0 and 180 degrees';

tsize 0.7.

print k4                  # The prop crossing a line.

We see that the estimated proportion is similar to the previous simulation. The reason is of course that we have doubled the areas (the black and the red) and this does not change the proportion.

Graph (V) - limiting line between black and red dots

Because of simulating a rather large amount of data (10000 points) we understand that there must be a borderline between the black and red areas. How can we work out the exact function of this line? The restriction in the Y-direction because of the angled needle is 


[image: image7.wmf])

sin(

2

a

l

  and  
[image: image8.wmf])

sin(

2

a

l

d

-


for the bottom and the top area respectively. (l is here the length of the needle.) We incorporate these borderlines in the following plot.

name k4 'prop crossing a line'

let k1 = 10000             # 10000 throws of a needle.

let k2 = 4                 # Distance between lines.

let k3 = 2                 # The length of the needle.

random k1 c1;              # Random positioning of point of

uniform 0 k2.              # gravity of needle between lines.

random k1 c2;              # Random angle of needle between 0

uniform 0 1.5708.          # and 90 degrees (1.5708 radians).

set c5                     # X-axis for the bordering lines.

0:1.5708/0.01

end

let c6 = k3/2*sin(c5)      # Y-result for the lower bordering line.

let c7 = k2 - k3/2*sin(c5) # Y-result for the upper bordering line.

# c3 will contain a '0' if any tip of the needle crosses

# any line (c3 will contain '1':s otherwise).

let c3 = ((c1 - k3/2*sin(c2) < 0) or (c1 + k3/2*sin(c2) > k2))

let k4 = sum((c1 - k3/2*sin(c2) < 0) or (c1 + k3/2*sin(c2) > k2))/k1

let c4 = c3 + 1            # c4 contains the colour of the dots in

                           # the next plot. A red dot means that

                           # the combination of position of point

                           # of gravity and angle cross the line.

                           # A black dot means that the tip did not

                           # cross a line.

plot c1*c2;                # 'point of gravity' against angle.

wtitle 'Graph (V) - limiting line between black and red dots';

symb;

size 0.4;

color c4;

axlabel 1 'Angle 0 - 90 degrees (0 - 1.5708 radians)';

tsize 0.7;

axlabel 2 'Position of point of gravity of needle';

tsize 0.7;

Scale 1;

tsize 0.6;

length 0.005;

HDisplay 0 0 0 0;

Scale 2;

length 0.005;

tsize 0.6;

HDisplay 0 0 0 0;

nodt;
data;

etype 0;

title 'A dot represents one throw of a needle';

tsize 1.1;

title 'Each dot shows the position of the point of gravity and the angle of the needle';

tsize 0.9;

tcolor 4;

title 'Red dots: thrown needles that cross a line of the surface';

tsize 0.9;

tcolor 4;

line c5 c6;

size 2;

color 4;

line c5 c7;

size 2;

color 4;

footnote 'Graph (V) - limiting line between black and red dots';

tsize 0.7.

print k4                  # The prop crossing a line.

The two blue lines separate the areas with the black dots ('throws where the needle does not cross a line') and the red dots ('throws where the thrown needle does cross a line'). 

In the next session we use the mathematics to find the area of consisting of the red dots.

A mathematical treatment

In order to calculate the probability that a needle crosses a line we need the size of the different areas. In doing so we refer to the distance between the line as 'd' and the length of the needle as 'l' rather than allocate special values to them.

Let us call the lower red area A1 and the upper red area A2 and, of course, these two areas are equal so we can write A1 = A2. This area will be calculated as follows:
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The total area A is a rectangle and is thus easily calculated and the probability (p) of 'a needle crossing a line' is the ratio of the total red area and the total area:
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If we now choose the length of the needle (l) to be half the distance between the lines (d) we find this simple relationship:
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And if we let 
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 ('p-hat') be the ratio between the number of red dots and the total number of dots we get the following estimate of :
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And this estimate of  is the central piece of Buffon's needle problem. 

Extra exercise (II).  Using any distance between lines and length of needle.

1. Choose a 'd' and an 'l'-value.

2. Calculate the theoretical 'p'-value using the general formula above. 

3. Copy the commands under the section 'Graph (II) - points crossing a line as red dots'.

4. Change the two commands 'let k2 = 4' and 'let k3 = 2' to the chosen values.

5. Execute the commands.

6. Compare the calculated 'p'-value with the output from this simulation (the result is printed in the session window).

(e.g. d = 4.7 and l = 2.1 give p = 0.284447. One simulation gave the estimate 0.279700.)

A final remark

The main idea in this paper is of course not to calculate the value of , already known to millions of decimal places. Instead the paper wants to combine statistical thinking, graphs and mathe​matics. There is also a rich literature that takes this problem even further. Why not throw the needles on a grid or even some more complicated pattern? In this way it is possible to introduce further statis​tical theory of outmost importance. It can be seen that when simulating  in the way described here (use e.g. the macro %Pi) the variation is rather large. By a smarter planning, this variation can be reduced substantially; but at the price of further skills in statistical theory.  ■
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