 Covariance between data values

This document discusses some ideas around the notion of so-called covariance. This is seldom brought up in more basic courses but is still an important issue as most statistical procedures rely on the concept of independence between results.

We start with a discussion of the covariance between sums and then averages and con​clude via simulation that the ideas seem to be correctly derived. We also stress that the idea with covariance and other important concepts do not belong to any specific dis​tri​bution; something we show via a simulation. We also briefly discuss some applications.

Also, how can we detect a covariance structure in a set of data that we investigate? We will show some tricks. 

At some plant we have seen results reported as ’based on the last 100 values’. How is the variance structure between the results? Surely, if the result were e.g. high at one calculation the next calcu​lated value would probably be approximately as high. After all, they are based on nearly the same data. How does it depend on the amount of ’overlapping’, i.e. the number of measurements that is simultaneously included in two consecutive results?

The definition of covariance between two variables X and Y is as follows:
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With some manipulation of the formula we get a version that is easier to work with:
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NB.  If X = Y, then the covariance is the same as the variance, i.e. the variance is the covariance of a variable with itself:
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Suppose that we have a number of measurements that we call Z where Z1, Z2, Z3, etc are the mea​surements e.g. for each day. Suppose that we add up the results for four days in the following manner where we let X and Y overlap in the following way:
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Because of the overlapping we suspect that there must be a relation between the variation in X and Y, i.e. we suspect a covariance. If we use the initial formulas for the covariance we can do the following manipulations:
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We then investigate the two terms in the expression, I and II:
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We simplify (and omit some terms) the expression for I:
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We simplify part II:
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If we add I and II and collect the terms we get the following appearance:
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Now the covariance between the data Z1, Z2, Z3, etc is zero. Therefore the sum I + II contains many zeros except for the covariance between Z2, Z2 and Z3, Z3 and Z4, Z4, i.e. the overlapping terms where the covariance is, according to statement above, is 2, the variance of the process. Thus we have the following result where the ‘3’ comes from the three overlapping terms:
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Simulation 1 (normal distribution).  We simulate some data with overlapping as above. We use a normal distribution with mean value 50 and standard deviation 5; i.e. the variance is 25:

random 1000 c1-c5;                # 1000 values in column c1-c5.

normal 50 5.                      # Normal mean = 50, sigma = 5.

rsum c1-c4 c7                     # Sums each row in c1-c4. Result in c7.

rsum c2-c5 c8                     # Sums each row in c2-c5. Result in c8.

covariance c7 c8                  # The covariance c7 c8.

The covariance command produces a triangle shaped table. The diagonal gives the variance of the variables (here X and Y) and the off diagonal shows the covariance. (The upper part of the triangle also shows the covariances but the are the same, i.e. the Cov(X, Y) = Cov(Y, X). If you store result in a matrix you will get the full table. Type HELP COVA for details.)

Remember that X and Y are sums of independent variables. Thus the variance of X and Y are sums of four variances of 25. This is also supported in the table above.

If you use the following command you will get the variance/covariance of the ‘daily’ measure​ments. This will give a table where the diagonal is close to 25 and the off-diagonal values are close to 0:

covariance c1-c5                  # The covariance c1-c5.

Simulation 2 (Bernoulli distribution).  The idea with covariance (as with e.g. mean, standard devi​ation, variance, etc) is not restricted to the normal distribution. It is a part of any random variable. Suppose e.g. that we look at things being judged as ‘OK’ or ‘not OK’ and that we sum over 5 items. The columns will now contain ‘0’ or ‘1’:

random 1000 c1-c5;                # 1000 values in column c1-c5.

Bernoulli 0.2.                    # The fault rate is 0.2.

rsum c1-c4 c7                     # Sums each row in c1-c4. Result in c7.

rsum c2-c5 c8                     # Sums each row in c2-c5. Result in c8.

covariance c7 c8                  # The covariance c7 c8.

In this process 2 = p(1 – p) i.e. 0.2(1 – 0.2) = 0.16. The variance of c7 and c8 is four times 0.16 (0.64) and the covariance is three times 0.16 (0.48). These results are supported in the data.

Simulation 3 (covariance between averages).  Above we derived the covariance of the sum of the measurements but perhaps it is more often that we calculate the average. Now we write X and Y as an ordinary average, i.e. as a linear combination of data according to the following model:
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The variance of the process of averages is according to the theory of linear combination (see the Ing-Stat documentation and the Ing-Stat macros for details) is 2/n. Also, if we derived a comple​tely general expression for the covariance, we would get the following expression:
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where k is the number overlapping terms, n is the number of terms in each average and  is the standard deviation of the original measurements. If n = 1, i.e. we work with the original data (as in the simulation above) and if k = 0, i.e. there is no overlapping, and thus the covariance is zero. The formula is truly very general.

NB.  the constant 1/n2 comes from multiplying each Z with this constant; here n = 4: 
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Again we simulate this and replace the ‘rsum’-commands by ‘rmean’-commands:

random 1000 c1-c8;              # 1000 values in column c1-c7.

normal 50 8.                    # Normal mean = 50, sigma = 8.

rmean c1-c5 c11                 # Sums each row in c1-c5. Result in c11.

rmean c4-c8 c12                 # Sums each row in c3-c7. Result in c12.

covariance c11 c12              # The covariance c11 c12.

Here we used k = 2, n = 5 and  = 8. We then expect the variance for c7 and c8 to become 64/5 = 12.8 and the covariance to become 2/25 ( 64 = 5.1. The simulation again supports this theory.

The covariance in practical use

The notion of covariance is constantly a part of statistical analysis. Many times this is not even noticed as it is built into the analysis. When e.g. performing a so-called regression analysis there is a variance/covariance matrix involved that takes care of several the problems involved because of the covariance between variables.

Simulation 4 (the initial example).  How can we estimate the standard deviation of the data in the initial example? All we have is a series of data where each value is based om the previous n values but if we can estimate the covariance we can also estimate the standard deviation if we know k and n and use the formula above:
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We perform a simulation to show this and we use k = 9 and n = 10, i.e. we base our calculation on the last 20 values. In order to create the data we need to use a few tricks:

random 1000 c1;                 # The original measurements.

normal 20 4.                    # 

lag  1 c1  c3                   # The ‘lag’-command copies the c1-data

lag  2 c1  c4                   # to the mentioned column but shifts

lag  3 c1  c5

lag  4 c1  c6

lag  5 c1  c7

lag  6 c1  c8

lag  7 c1  c9

lag  8 c1 c10

lag  9 c1 c11

lag 10 c1 c12

rsum c3-c12 c14

copy c3-c7 c3-c7;

omit 1:5.
Autocovariance.  When there is a covariance between consecutive values in a data series, this is sometimes called autocovariance to stress that it is a covariation with itself (‘auto’). There is a handy command to study the variation and therefore we will simulate some data to show this. The command (acf) calculates the covariance between data 1, 2, 3, etc values apart.  ■
random 1000 c1;                 # 

normal 20 4.                    # 

lag 1 c1 c3

lag 2 c1 c4

lag 3 c1 c5

lag 4 c1 c6

lag 5 c1 c7

rsum c3-c7 c9

copy c3-c7 c3-c7;

omit 1:5.

acf c9
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