 Random sums of random variables

The idea with sums of random variables (sometimes called linear combinations of vari​ables) has been treated in several other documents. Examples of such combi​na​tions are so common that we hardly notice them. Perhaps the most common one is the ordinary average, calculated from some values. Other common examples are mechanical fitting of parts, the total thickness over a number of layers in a modern circuit board, the total resistance across a number of resistors etc, etc. See chapter 4 of “A course in statistics”, “A col​lection of diagrams” and “Exercises with computer support” and various documents on our homepage for more information. These documents also mention some so-called non-linear combinations and how they can be treated.

What is then a random sum of random variables? A simple example might cast some light on the area: the total weight transported in an ordinary elevator for persons. Here the expression ‘random variables' corresponds to the variation in body-weight between diffe​rent persons. The expression ‘random sums' is the fact the number of people in the ele​vator varies from transport to transport. Also, when testing some equipment there is often a random number of tests or retests, each with a random time needed.

In the example with resistors in a circuit we have a constant number of terms (i.e. a constant num​ber of resistors), but in the example with the elevator we have a varying number of terms (i.e. per​sons). The two sums are often written in the following different ways (We will be using SN in this document as a sum of a random number of random variables):
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	Here the lower case n indicates a constant number of terms.
	Here the upper case N indicates a random variable that determines the number of terms.


A sum consisting of a random number of terms is also very common. The number of customers per day to a petrol station is of course varying and the amount of petrol bought by each customer is also varying. To a repair station a varying number of units arrive per day. Each unit needs a varying number of replacement parts, repair time, etc. It is obvious that random sums play a role when looking at such questions. And if we know the distribution of N, the number of terms, and the distribution of Xi, we can derive some important features of the sum SN.

A worked example.  Below we will work through a simple case where N is an ordinary six-sided die and Xi is also this six-sided die. The sum then arises from the following use of the die:

“Throw the die once. Then throw the die the number of times indicated by the first throw. Add up these last throws.”

This sum is now an observation of SN. It is easy to see that the minimum value of SN is 1 and the maxi​mum is 36, i.e. one throw with the outcome of 1 or 6 throws, each one with the result 6. But what is the mean, what is the standard deviation, what is the probability of a sum equal to or larger than, say, 32? In order to answer these questions we need the distribution of SN. Below we work through this in a fairly simple way.

The general formula, when the sum consists of discrete variables (Xi) is as follows. We designate the possible results of SN by the letter ‘j'. The expression ‘P(SN = j)' means ‘the probability that the random variable SN obtains the result j is equal to':
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However, in our case n will be in the interval 1 to 6 so we rewrite the formula:
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(The range of n from 0 to infinity might be correct for certain situations. The elevator sometimes runs with 0 people (although it would be interesting to see an elevator that can give room to an infini​tely large amount of people!))

P(SN = 3).  How is this formula derived? It is really built up by a simple reasoning involving random events and basic building blocks. Suppose that j = 3. The following table shows the result:

	Event ‘SN = 3'
	Probability
	Rem

	(n = 1 and X1 = 3) or
	P(N = 1) · P(X1 = 3)
	

	(n = 2 and X1 + X2 = 3) or
	P(N = 2) · P(X1 + X2 = 3)
	

	(n = 3 and X1 + X2 + X3 = 3) or
	P(N = 3) · P(X1 + X2 + X3 = 3)
	

	(n = 4 and X1 + X2 + X3 + X4 = 3) or
	P(N = 4) · P(X1 + X2 + X3 + X4 = 3)
	= 0

	(n = 5 and X1 + X2 + X3 + X4 + X5 = 3) or
	P(N = 5) · P(X1 + X2 + X3 + … + X5 = 3)
	= 0

	(n = 6 and X1 + X2 + X3 + X4 + X5 + X6 = 3)
	P(N = 6) · P(X1 + X2 + X3 +…  + X6 = 3)
	= 0


If we replace each 'and' with multiplication and each 'or' with addition (common rules in con​nec​tion to calculation of probabilities) we get the result. (When j = 3 we do not need to use the three last rows as the probability is equal to 0. It is not possible to get the sum 3 when throwing a die four or more times!)

1. Term number one is fairly easy:
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2. Term number two is only slightly more difficult. When throwing a die twice there are 36 different outcomes and 2 of these sum to 3 namely the outcome (1, 2) and (2, 1). We then get the result: 
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3. Term three is more difficult. We need to look at 216 different combinations and see how many of these that sums to 3. (For n = 6 and j = 12 we show below how we use the strength of the computer to handle a large number of situations.) Amongst the 216 different outcomes there is 1 that sums to 3 namely (1, 1, 1). We then get the result: 
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Now we can finally give the answer:
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	The probability of getting the sum 3 when throwing a die a random number of times is 
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 when the random mechanism (i.e. the number of terms) is controlled by a die.


The table above is what we need to do when j = 3 and it is fairly easy to do the calculations by hand. But suppose that j = 12. Then we realise that e.g. X1 + X2 + X3 + X4 + X5 + X6 = 12 can be obtained in a number of different way. Surely, pen and pencil and hard work can handle this. When throwing a die 6 times there are 66 = 46656 different outcomes and some of these will add to 12. How many?

Obviously there is a need for more efficient methods. Unfortunately, these are more compli​cated and we refer to the available literature but in the appendix (last page) we discuss one available formula. Here we instead will use the brute force of our PC and create all 46656 cases and investi​gate how many add up to 6, 7, 8, …34, 35 and 36.

set c1                               #

(1:6)7776                            #

end                                  #

                                     #

set c2                               #

6(1:6)1296                           #

end                                  #

                                     #

set c3                               # Column c1-c6 will now 

36(1:6)216                           # contain all 46656 possible

end                                  # results when throwing

                                     # a die 6 times.

set c4                               #

216(1:6)36                           #

end                                  #

                                     #

set c5                               #

1296(1:6)6                           #

end                                  #

                                     #

set c6                               #

7776(1:6)                            #

end                                  #

let c8 = c1 + c2 + c3 + c4 + c5 + c6 # Adds the result.

tally c8;                            # Tallies the different outcomes,

store c10 c11.                       # i.e. how many '6', '7', '8', etc.

let c12 = c11/sum(c11)               # c12 now contains the probability

                                     # distribution of sums of 6 throws.

The macro %Die also describes the results for different numbers of throws.

Finalising the calculations.  Above we gave the general formula for calculating P(SN = j) for any valid j (valid ‘j's are integers in the range 1 to 36). We have also shown how to reason in order to get the result for j = 3 and we have shown how to obtain the distribution of sums from 6 throws with a die. Now we need to assemble all this.

The macro %Die calculates the distribution of sums of 1, 2, 3, …6 throws and stores the result in the six columns c2, c7, c12, c17, c22 and c27. We might as well use this information in order to do our final calculations. We need to align the columns vertically so the outcome of, say, 4 is on the same row for all columns. We do this by filling the top of the column with zeros:

%Die                                 # Creates the columns c2, c7, c12 etc.

copy c2 c31                          # Copies c2 to c31.

copy c7 c32                          # Copies c7 to c32.

insert 0 1 c32                       # Inserts a '0' between row

0                                    # 0 and 1 (i.e. on the top) of c32.

end

copy c12 c33                  # Copies c12 to c33.

insert 0 1 c33                # Inserts two '0':s between row

0 0                           # 0 and 1 (i.e. on the top) of c33.

end

copy c17 c34                  # Copies c17 to c34.

insert 0 1 c34                # Inserts three '0':s between row

0 0 0                         # 0 and 1 (i.e. on the top) of c34.

end

copy c22 c35                  # Copies c22 to c35.

insert 0 1 c35                # Inserts four '0':s between row

0 0 0 0                       # 0 and 1 (i.e. on the top) of c35.

end

copy c27 c36                  # Copies c27 to c36.

insert 0 1 c36                # Inserts five '0':s between row

0 0 0 0 0                     # 0 and 1 (i.e. on the top) of c36.

end

Now we can finally calculate the distribution of random sums in this example:

rsum c31-c36 c38              # Sums each row, result in c38.

let c41 = 1/6 * c38           # Creating the final distribution.

We check that c41 adds to 1 by a simple command:

sum c41                       # Shows that the total sum is 1.

	The probability distribution of a random sum described in this example is now stored in column c41. 


Also the result for j = 3, calculated above as 
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, can be verified as the third value of column c41. 

Calculation of expected value and standard deviation.  In order to calculate the expected value () and the standard deviation () for the distribution derived above, we use the macro called %Credist. However, first we need a column with all the possible outcomes: 

set c40                       # Creating a column with the possible

1:36                          # values 1 to 36.

end

erase c1-c39                  # Erases c1-c39.

Do the following steps:

1. Start a new session of Minitab an run the macro %Credist

2. Copy column c40 and c41 from the previous session and paste them into
column c1 and c2 of the new session

3. Type number of data point to simulate (e.g. 1000) after the last cell of c1 (i.e. cell 37)

4. Rerun the macro %CreDist

If everything works out correctly we will find that  = 12.250 and  = 6.778 in the distribu​tion discussed above. It can also be noted that the distribution has a somewhat peculiar shape. This will again be seen in the simulation below. 

A simulation of the random sum.  It is also a good idea to simulate the theoretical deriva​tion above. We do this in a number of steps below: 

restart                       # Clears the worksheet (if necessary).

name c1 'X1' c2 'X2' c3 'X3' c4 'X4' c5 'X5' c6 'X6'

name c10 'N' c8 'Sum'

let k1 = 20000                # Number of rows.

random k1 c10;                # The N-variable, i.e. number 

integer 1 6.                  # of terms in the sum.

random k1 c1-c6;              # The X-variables, i.e. the terms

integer 1 6.                  # of the sum.

# The next command uses a trick. As long as N is above or equal to

# 6 we keep adding. The result of the parenthesis is either 1 or 0.

let c8 = c1*(c10 ge 1) + c2*(c10 ge 2) + c3*(c10 ge 3) + &

         c4*(c10 ge 4) + c5*(c10 ge 5) + c6*(c10 ge 6)

hist c8;                      # Gives a histogram of the data.

bar;

type 1;

color 4.

descr c8                      # Gives a numerical description.

The peculiar shape of the distribution, with a sudden change at the value 6, can also be seen in the histogram. 

A general expression for the expected value and the standard deviation

There is a general expression, valid not only for the case described above but also any other random sum of random variables, for  and  in connection with random sums of variables. 

The expected value is a product of the expected value of the variable that creates the number of terms (this variable is here called N) and the expected value of the unique term (Xi): 
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If we use the data in this example we get 
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, i.e. exactly the result above using %CreDist on the calculated distribution. The standard deviation is slightly more complicated:
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This example gives 
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, i.e. exactly the result above using %CreDist on the calculated distribution. 

If we take a look on these expressions we will see that if did not have a random sum, but a fixed number of terms, then the standard deviation of N would be zero so the second term under the square root sign would disappear. Thus N would be a constant and then we would be back to the case of an ordinary linear combination of variables! 

The completely general case

A thorough penetration of the concept of random sums of random variables needs the literature that covers the mathematical sides of statistics, under headings such as 'Compound Distributions' and 'Generating Functions'. There will be formulas and expressions that elegantly wrap up everything in a nice way, at the expense of a higher mathematical level. The way that we used above in this example is mathematically correct but clumsy; especially when we need to use the brute force in making a table nearly 50000 lines long! 

We will end this document with some common situations. In the two first cases N is distributed according to a Poisson distribution and in the first case each Xi is distributed as a Bernoulli variable (such a vari​able can only take two values, usually designated 1 and 0 and might stand for ‘OK' or ‘not OK'). In the second case Xi is distributed as an exponential distribution.

Case I.  Every week we receive a number of Trouble Reports (TR) and each report is either ‘OK' or ‘not OK' in a certain sense (not complete or it needed to be sent for a special treatment or perhaps not a TR at all). A certain proportion (p, 0 < p < 1) of the TR's have this special feature.

This example can of course be paralleled in many different ways. N can be the number of seeds from a plant and p is the probability that a seed grows. N can be the number of offsprings from an animal and p is the probability that an offspring survives. N can be a random number of batches for inspection in a day and p is the probability that a batch is rejected.

The mathematical theory shows that if N is distributed according to a Poisson distribution with parameter  (the intensity) and Xi is distributed according to a Bernoulli with parameter p then SN (the sum) is distributed according to a Poisson distribution with parameter p.

We will throw some light on the situation by a simulation. (NB that there is some difficulty in this case as we do not know the upper limit of terms to add, as the Poisson has no upper limit. We can of course do a good guess and this is what we do here. Using the macro %Ppdfcdf we hope that a practical upper limit of 16 can be used):

restart                       # Clears the worksheet (if necessary).

let k1 = 20000                # Number of rows.

let k2 = 0.3                  # The p-value.

random k1 c17;                # The N-variable, i.e. number of terms

poisson 5.1.                  # in the sum. Po(5.1).

random k1 c1-c16;             # The X-variables, i.e. the terms of

bern k2.                      # the sum. (Here 0 or 1).

name c17 'Number of terms' c18 'Random sums of N terms'

let c18 =  c1*(c17 ge 1) +  c2*(c17 ge 2) +  c3*(c17 ge 3) + &

           c4*(c17 ge 4) +  c5*(c17 ge 5) +  c6*(c17 ge 6) + &

           c7*(c17 ge 7) +  c8*(c17 ge 8) +  c9*(c17 ge 9)

let c18 = c18+c10*(c17 ge 10)+c11*(c17 ge 11)+c12*(c17 ge 12)+ &

              c13*(c17 ge 13)+c14*(c17 ge 14)+c15*(c17 ge 15)+ &

              c16*(c17 ge 16)

hist c18;                     # Gives a histogram of the data.

title 'A random sum of integer variables (Case I)';

tsize 0.9;

bar;

type 1;

color 4.

descr c18                     # Gives a numerical description.

Is c18 distributed as a Poisson distribution with the parameter value of 5.1 · 0.3 = 1.51? One way to find out is to use the macro %Pdata. 

Case II.  Suppose that every week we receive a number of orders and each order needs a certain preparation time. (The only difference compared to previous examples is that this time we handle a continuous X-variable.)

Suppose that handling times are exponentially distributed with the parameter 5.2, i.e. 5.2 hours per order. How will the distribution of the sums per week be?

Suppose that N is distributed as a Poisson variable with parameter 4.8, i.e. 4.8 orders per week. Again we use simulation to look at the problem:

restart                       # Clears the worksheet (if necessary).

let k1 = 20000                # Number of rows.

let k2 = 5.2                  # The parameter value of the exp-dist.

random k1 c17;                # The N-variable, i.e. number of terms

poisson 4.8.                  # in the sum. Po(4.8).

random k1 c1-c16;             # The X-variables, i.e. the terms of

expo k2.                      # the sum.

name c17 'Number of terms' c18 'Random sums of N terms'

# We use the same trick as before.

let c18 =  c1*(c17 ge 1) +  c2*(c17 ge 2) +  c3*(c17 ge 3) + &

           c4*(c17 ge 4) +  c5*(c17 ge 5) +  c6*(c17 ge 6) + &

           c7*(c17 ge 7) +  c8*(c17 ge 8) +  c9*(c17 ge 9)

let c18 = c18+c10*(c17 ge 10)+c11*(c17 ge 11)+c12*(c17 ge 12)+ &

              c13*(c17 ge 13)+c14*(c17 ge 14)+c15*(c17 ge 15)+ &

              c16*(c17 ge 16)

hist c18;                       # Gives a histogram of the data.

title 'A random sum of Exp(5.2) variables (Case II)';

tsize 0.9;

title 'Number of terms per sum: Po(4.8)';

tsize 0.7;

bar;

type 1;

color 4.

descr c18                      # Gives a numerical description.
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	Compare the results from the 'descr'-command with the two formulas for the mean value and the standard deviation for the sum:
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The  and  for N are 4.8, 2.19

The  and  for X are 4.8.

Enter these four values in the formulas. The result is to be compared to the result of c18.




Final remark.  When adding a constant number of exponentially distributed variables the sum becomes gamma distribution. A random number of variables thus give a resulting vari​able with a variation larger than the mentioned gamma distribution.

Case III.  The following example further illuminates the idea with random sums of random vari​ables. Here we also use the theoretical expressions to calculate the mean and the standard devia​tion of the result. NB that we only look at these two measures and not the very distribution; to obtain this is much more difficult.

In this case we use so-called logical expressions like "(c10 = 4)" which is equal to 1 if the expres​sion is true and 0 if it is false. The expression works row wise of the columns. The random sums are stored in c8 and are described both numerically and graphically. The theoretical values are then finally calculated. All lines can be copied and pasted into Minitab, including the comments.

erase c1-c1000                # Erases columns c1-c1000.

name c10 'Number of terms' c1 'Data 1' c2 'Data 2' c3 'Data 3'

name c4 'Data 4' c5 'Data 5' c6 'Data 6' k11 'muWeib' k12 'SigmaWeib'

name k13 'muInt' k14 'SigmaInt' k15 'muSn' k16 'SigmaSn'
Let k1 = 5000                 # 
Let k3 = 1.9                  # The a-parameter (Weibull). See %Wpdfcdf.

Let k4 = 9.4                  # The b-parameter (Weibull).
Random k1 c10;                # 

integer 1 6.                  # 

random k1 c1-c6;              # The X-variables, i.e. the terms

Weibull k3 k4.                # of the sum.

let c8 = (c10 = 1)*c1 + (c10 = 2)*(c1+ c2) + (c10 = 3)*(c1 + c2 + c3) + &

         (c10 = 4)*(c1 + c2 + c3 + c4) + (c10 = 5)*(c1 + c2 + c3 + c4 + c5)

let c8 = c8 + (c10 = 6)*(c1 + c2 + c3 + c4 + c5 + c6)
descr c8                      # Describes the sums within the intervals.
hist c8;                      # Histogram over all sums.

cutpoint;                     #

title 'Random sums of data'.  #
ECDF C8;                      # Empirical cumulative distribution function,

title 'Random sums of data';  # (ECDF).
  Connect.                    #

# The following lines of code calculates the theoretical values of the X-

# variable (Weibull, see %Wpdfcdf):

let muWeib    = k4 * Gamma(1+1/k3)

let SigmaWeib = sqrt(k4**2 * Gamma(1+2/k3) - [k4 * Gamma(1+1/k3)]**2)

# The mean value and the standard deviation of an integer distribution can be found using the %CreDist-macro and are stated here:

let muInt = 3.500             # On the average: 3.5 terms in the sum.

let SigmaInt = 1.708          # Standard deviation: 1.708 terms.
# Calculation of the mean value and the standard deviation of the sums:

let muSn = muInt * muWeib     # See formula page below!

let SigmaSn = sqrt(muInt*SigmaWeib**2 + muWeib**2*SigmaInt**2)
print muSn SigmaSn
The printing of these two theoretical results should coincide well with the data from the 'descr c8'-command above. Any difference is due to the random variation only. 
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Case IV.  In this case we simulate a stream of customers to a service of some kind and each customer is an event. Also, each customer buys an amount of some goods and this amount is simulated in c1. The 'time between customers'-data is simulated in c10.

We are interested in the total amount per time period (e.g. week) and this consists of course of a random sum of random variables. To be able to create weekly data we use a number of tricks. The main one is using 'parsum' on the time between each customer and this creates the time point for each event, and the 'floor'-command to determine in what week a certain customer arrives. Together with this we use the 'Stats'-command to get the information that we want. See also the comments below and the 'Help'-function to get information.
erase c1-c1000                # Erases columns c1-c1000.
Name c1 'X-value per event' c10 'Time between event' 

Name c11 'Time point for each event' c12 'Time interval'

Name c2 'Sum within interval' c3 'Numb of values within interval'

Name k11 'E(X)' k12 'Sigma' k13 'Number of empty intervals'
Let k1 = 5000                 # Number of events.

Let k2 = 5                    # Number of days per period.

Let k3 = 2.1                  # The a-parameter (Weibull). See %Wpdfcdf.

Let k4 = 13.4                 # The b-parameter (Weibull).

Let k5 = 2.6                  # The parameter of exponential distr.

random k1 c1;                 # The X-variable. A Weibull distribution

Weibull k3 k4.                # with 'a' = k3 and 'b' = k4. This gives

                              # the amount bought by each customer.
Random k1 c10;                # The time between events. A exponentially
expo k5.                      # distributed variable.

parsum c10 c11                # Partial sums of c10, result in c11.

let c12 = floor(c11/k2) + 1   # Time interval.

Stats c1;                     # Statistics of data in c1:

Sums c2;                      #      * Sum of each interval    – in c2
N c3;                         #      * Number in each interval – in c3
By c12.                       # C12 is used as the grouping variable.

# The coding above does not show those time intervals with zero events.
# The following lines performs a trick to find these by listing the

# 'interval number' and do a DIFF. We then get '0's, '1's, '2's, etc.
# The number of values '2' or larger constitutes the number of '0's. 

# (Perhaps the very first value needs to checked independently but we

# leave this out here.) Then we insert '0's in c2 and c3.
diff c12 c13                  # Finds differences of c12, stores in c13.

tally c13;                    # Tallies c13, stores the result in c14-c15.

store c14 c15.

let k13 = sum((c14 > 1)*(c14-1)*c15)  # Finds number of interval with '0'.
insert 0 1 c2                 # Inserts number of '0'-sums.
k13(0)

end

insert 0 1 c3                 # Inserts number of '0-events.

k13(0)

end

Descr c2                      # Describes the sums within the intervals.
plot c2*c3;                   # The more values the larger sum.

title "'Sum' against 'number of values'".

hist c2;                      # Histogram over all sums.

cutpoint;

title 'Random sums of data'.  #
# The following lines of code calculates the theoretical values of the X-

# variable i.e. the amount purchased by each customer.

let k11 = k4 * Gamma(1+1/k3)

let k12 = sqrt(k4**2 * Gamma(1+2/k3) - [k4 * Gamma(1+1/k3)]**2)

print k11 k12

The printing of these two theoretical results should coincide well with the data from the 'descr c2'-command above. Any difference is due to the random variation only. 

[image: image20.wmf]X

N

S

N

m

m

m

×

=



[image: image21.wmf]2

2

2

N

X

X

N

S

N

s

m

s

m

s

×

+

×

=


	
[image: image22.wmf]N

u

m

b

 

o

f

 

v

a

l

u

e

s

 

w

i

t

h

i

n

 

i

n

t

e

r

v

a

l

S

u

m

 

w

i

t

h

i

n

 

i

n

t

e

r

v

a

l

9

8

7

6

5

4

3

2

1

0

1

4

0

1

2

0

1

0

0

8

0

6

0

4

0

2

0

0

'

S

u

m

'

 

a

g

a

i

n

s

t

 

'

n

u

m

b

e

r

 

o

f

 

v

a

l

u

e

s

'


	The graph shows information that is expected: the more terms in the sum the larger the sum.
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	The histogram shows the distri​bution of the simulated sums.

There is a clearly larger bar at zero, indication weeks with no sale at all.

If we increase the number of customers, i.e. making the average time between customers smaller, or increase the length of the time period, the zero-bar will be smaller and eventually disappear.



Appendix: a formula for the sum of the die

There is a formula that can be used to calculate the probability regarding sums of variables from a uniformly discrete distribution such as a die:
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Here s is the total sum, n is the number of throws and the distribution is 1, 2, 3, … a. In order to do the necessary calculations we will use the so-called Gamma function ((m)). If m is an integer the following relation is true (we will use the Minitab-command Gamma() below):
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         and if we use the argument (m + 1) we get       
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We need this fact in order to calculate expressions of the type 
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The expression 
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 in the main formula means the integer part of the expression inside the square brackets.

An example.  Suppose that s = 16 and that a = 6 (an ordinary die) and n = 6. We enter these numbers in the formula. (After running the macro %Die we know the answer to be 2247/46656):
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We see that the sum will consist of two terms (i = 0 and i = 1). We expand the expression:
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We need to calculate the expressions within the brackets. We do this using the command Gamma. The first, second and third results become 3003, 6, and 126 respectively:

let k1 = 15                 # n

let k2 = 5                  # x

let k3 = gamma(k1+1)/(gamma(k2+1)*gamma(k1-k2+1))  # First result.
let k1 = 6                  # n

let k2 = 1                  # x

let k4 = gamma(k1+1)/(gamma(k2+1)*gamma(k1-k2+1))  # Second result.

let k1 = 9                  # n

let k2 = 5                  # x

let k5 = gamma(k1+1)/(gamma(k2+1)*gamma(k1-k2+1))  # Third result.

prin k3-k5

We put all the results in the formula and calculate the result:
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The result became, as expected, 2247/46656.  ■
See also the macro %Die
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