
A comparison of results from two Poisson distributions

Suppose that we have data from two Poisson distributions X and Y. The outcome from such vari​ables is always an integer, (”count”). Let X be the result from a number of ’claims’, ’Trouble Reports’, ’fault type A’ (or whatever we count) on a circuit XYZ, cabinet ABC, order DEF, per week, per month or whatever we have studied. In the same way is Y a number in another type of cabinet, surface, time unit, etc. (See 'Summary' at the end of the document).

We want to investigate if the result comes from only one distribution or if there is a significant difference between X and Y. (Anyone who needs a better understanding of the Poisson distribution and the binomial distribution can consult general books in statistics or chapter 8 in A course in statistics, A collection of diagrams and Exercises with computer support.)

It can be shown that if 
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. This is shown using so-called conditional probability. The expression can be rewritten as 
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 are the expected values (theoretical mean) of X and Y respectively.

This also means that we have reformulated the problem into a simpler problem, namely a cal​cul​ation of a con​fidence interval for p. If e.g. a calculated confidence interval includes p = 0.5, this means that we can not determine if the two processes are different, because if X = Y then p = 0.5, a fact that is most visible in the top formula.

Before performing a more thorough exercise we simulate some data to confirm the theory above.

Simulation, example 1.  Suppose that X and Y are two Poisson variables with the ("event") inten​sity of 6.1 events per (in this case) cabinet:

# ----------------------------------------------- Example 1

let k1 = 50000                # Number of values to be simulated.

random k1 c1;                 # Stores k1 values in c1 (X)

Poisson 6.1.                  # from Po(6.1).

random k1 c2;                 # Stores k1 values in c2 (Y)

Poisson 6.1.                  # from Po(6.1).

let c3 = c1 + c2              # Adds the X and Y the result.

For this simulation we need a large number of results with the same ‘n’ (in a real example we have only one result of course, see below) therefore we simply select all rows summing to the same value and in doing so we chose the most common value.

tally c3;                     # Tallies and stores the different

store c5 c6.                  # sums.

sort c6 c5 c8 c9;             # Sorts the different sums

desc c6.                      # in decreasing order.

let k2 = c9(1)                # k2 now contains the most common

                              # sum of type X + Y.

copy c1 c2 c11 c12;           # Copies all rows in c1 and c2 to c11

use c3 = k2.                  # and c12 where the sum is equal to k2.

Now we can test the statement that the X-result (given that X + Y = n) is binomially distributed. 'n' is in this example chosen to be the most common value, stored in k2. The simplest way is to run the macro %Bdata:

%Bdata                        # Starts the macro ‘Bdata’

c11                           # The data is stored in c11.

k2                            # Sample size 'n'.

The printout probably shows that the X-result (given the sum X + Y) can be regarded as binomially distributed (exactly as the theory states). 

p-hat (the calculated fault rate) is, as expected, close to 0.5. As we simulated two distributions (X and Y) having the same expected value we get p = 0.5 (see the formula above).

Simulation, Example 2.  Suppose this time that X and Y are two Poisson distributed variables with the event intensity 6.1 and 12.2 events per cabinette. Other comments are still valid: 

# ----------------------------------------------- Example 2

let k1 = 50000                # Number of values to be simulated.

random k1 c1;                 # Stores k1 values in c1 (X)

Poisson 6.1.                  # from Po(6.1).

random k1 c2;                 # Stores k1 values in c2 (Y)

Poisson 12.2.                 # from Po(12.2).

let c3 = c1 + c2              # Adds the X and Y the result.

tally c3;                     # Tallies and stores the different

store c5 c6.                  # sums.

sort c6 c5 c8 c9;             # Sorts the different sums

desc c6.                      # in decreasing order.

let k2 = c9(1)                # k2 now contains the most common

                              # sum of type X + Y.

copy c1 c2 c11 c12;           # Copies all rows in c1 and c2 to c11

use c3 = k2.                  # and c12 where the sum is equal to k2.

Now we can test the statement that the X-result (given that X + Y = n) is binomially distributed. The simplest way is to run the Ing-Stat macro %Bdata:

%Bdata                        # Starts the macro ‘Bdata’

c11                           # The data is stored in c11.

k2                            # Sample size ‘n’.

Again the printout probably shows that the X-result (given the sum X + Y) can be regarded as binomially distributed (exactly as the theory states). 

p-hat (the calculated fault rate) is, as expected, close to 0.33. As we simulated two distributions (X and Y) having the expected value 6.1 and 12.2 we get p = 0.33 (see the formula above).

We also get that 
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, exactly as stated above.

A more realistic result (I). Suppose that we have the following observations where X = 4.1 and Y = 5.5 are used for the simulation (the lambda values are chosen more or less randomly just to show the theory):
X:    5     3     2     3     3     6     4     3     6     2

Y:    7     8     4     9     2     4     3     8     4     6

As we have supposed that the X- and Y-results come from a Poisson distribution, possibly with different para​meter values (different event intensities) then also the sums are distributed according to Poisson. The two sums are 37 and 55, respectively, and the total sum is 92.

In order to test the data we run the Ing-Stat macro %Confp (see also the menus [Stat]>[Basic Statistics]>[1 Proportion…]):

%Confp                        # Starts the macro %Confp

37                            # x.

55                            # n.

The 95% confidence interval becomes 0.301 to 0.510. The interval embraces p = 0.50 and thus the test can not separate X and Y (in spite of the different parameter values (4.1 and 5.5) used in the simulation). We need more data and we do this in the following example.

A more realistic result (II).  Suppose that we have the following observations simu​lated using the two intensities  = 5 and  = 8, respectively:
X:    2    4    5    4    4    5    6    3    9    3    2    2

      6    4    5    8    6    5    5    3    3    3    5    2

      8    6    6    2    4    5

Y:   13    7    6    4    8    8   10    6   12    7    4    3

      9    6    9    8    8    8    7    7    7    7   12   13

      6   11    7   12    7    4

As we have supposed that the X- and Y-results come from a Poisson distribution, possibly with different para​meter values (different event intensities) then also the sums are distributed according to Poisson. The two sums are 135 and 236, respectively, and the total sum is 371.

In order to test the data we run the macro %Confp (see also the menus [Stat]>[Basic Statistics]>[1 Proportion…]):

%Confp                        # Starts the macro ‘Confp’

135                           # x.

371                           # n.

The 95% confidence interval becomes 0.315 to 0.415. The interval does not embrace p = 0.50 and thus we can reject the hypothesis that X and Y have the same expected value. If we now use this information we can state the following:
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We see that the test captures the truth fairly well as the expected value of Y is 8/5 = 1.6 times larger than the expected value of X.

A final example.  Suppose that a cable manufacturer measures number of 'breakdowns' of a cable of a given length. He has made two cables under different conditions and observed 14 and 23 'breakdowns' and now wonders if there is a significant difference or just a random result.

Using the theory above we then have X = 14, n = 37. We run the macro %Confp (or using the menus [Stat]>[Basic Statistics]>[1 Proportion…]):

%Confp                        # Starts the macro 'Confp'

14                            # x.

37                            # n.

The 95% confidence interval becomes 0.225 to 0.552. The interval embraces p = 0.50 and thus the test can not separate X and Y. Perhaps more data will show that there is a significant difference between X and Y.

Comments.  The theory and reasoning above shows how it is possible to compare the outcomes from two Poisson distributions in order to assess possible difference between the expected values of the distributions. The main idea is the possibility to create and test the following ratio:
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The derivation of this expression is to be found in books in statistics where the Poisson distribu​tion is treated in more depth than just its basic features. See e.g. Poisson Processes by J.F.C. Kingman (page 7).

Summary

Below we summarize some common situations for the normal distribution, binomial distribution and Poisson distribution. We refer to applicable macros, menus or chapters in A course in statistics, A collection of diagrams and Exercises with computer support. 

	Normal
	Test of hypothesis and confidence interval of 

	Menus:
	
[Stat]>[Basic Statistics]>[1-Sample t…]

	Macro:
	
%Ndata

	Others:
	
Ch 10 in A course in statistics

	
	

	
	Test of hypothesis and confidence interval of 

	Menus:
	
[Stat]>[Basic Statistics]>[2-Sample t…]

	Macro:
	
%t-test

	Others:
	
Ch 10 in A course in statistics

	
	

	
	

	Binomial
	Test of hypothesis and confidence interval of p

	Menus:
	
[Stat]>[Basic Statistics]>[1 Proportion…]

	Macro:
	
%Confp

	Others:
	
Ch 10 in A course in statistics

	
	

	
	Test of hypothesis and confidence interval of p1 – p2

	Menus:
	
[Stat]>[Basic Statistics]>[2 Proportion…] (normal dist. approximation)

	Macro:
	
-

	Others:
	
Ch 10 in A course in statistics

	
	

	
	

	Poisson
	Test of hypothesis and confidence interval of 

	Menus:
	
-

	Macro:
	
%Conflam

	Others:
	
Ch 10 in A course in statistics

	
	

	
	Test of hypothesis and confidence interval of 1 – 2

	Menus:
	
-

	Macro:
	
-

	Others:
	
This document.

	
	

	NB
	This document performs an exact test of the ratio between 1 and 2 and not via any normal approximation.  ■
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