 Two different estimators

This document illuminates perhaps a small but not unimportant problem in statistics namely that we have two different estimators of a parameter. Typical questions are: “In what way are the estimators different? Do they have different precision, measured in some way? Are there any (mathematical) difficulties in the calculations? Etc, etc. Here we are going to discuss two different estimators of the variance of a special variable.

Suppose that we have a so-called dichotome variable X (only two possible values) with outcome X = 1 and X = 0. (Typically used for 'OK' and 'not OK' situations.) We designate the probabilities p and (1 – p) respectively and we also write P(X = 1) = p and P(X = 0) = (1 – p). 

First we calculate the expected value and the variance. The following expressions are the defini​tions of these parameters:
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From any basic course in statistics we know that the following two expressions are the most common estimators of the parameters:


[image: image2.wmf]1

)

(

2

2

2

-

-

=

»

=

»

å

å

n

x

x

s

n

x

x

i

s

m


However, knowing the expected value and the variance of the variable above we would think that the following expression could be used as an estimator of the variance:
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Obviously we have two different estimators of the variance of a dichotome variable defined as above. What is the difference? Let's develop the second one:

A.
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In many books of statistics there is a development of the formula for estimating the variance. The reason is that we get a formula that gives the same result but is easier to use when we do the calcu​lations by hand (thus are rather obsolete argument):

B.
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The only difference we can see is the difference in numerator at A and B, 'n' instead of 'n – 1'. From the textbooks we know that the numerator 'n – 1' makes the estimator at B unbiased and thus the estimator at A is biased (see also the document 'Why n – 1.doc'). This means approximately that it does not aim at the true value (2) but at some value slightly beside the true value. Let us do some simulations to show this.
Correcting the bias

We can correct for this bias by multiply by n and then divide by (n – 1). Then we will get exactly the same result. We show this with some data:

let k4 = 20                       # Number of '0' and '1'.

random k4 c1;                     # Stores k4 '0' and '1' in column c1.

bernoulli 0.2.                    # 'p' = 0.2.

let k1 = stand(c1)**2             # Variance estimate according to 'B'.

let k2 = mean(c1) *(1 - mean(c1)) # The estimate according to 'A'.

let k3 = k2*k4/(k4-1)             # Corrects for the bias.

prin k1-k3                        # Shows the result.

The constants k1 and k3 shows, after correction for the bias, exactly the same result.

Simulation with small n
First we do a simulation using a small n.

let k1 = 0.10                     # p-value.

let k2 = k1*(1 - k1)              # The true variance.

let k3 = 10000                    # Number of simulated values.

let k4 = 4                        # The sample size (each row of data

                                  # is one sample).

let k5 = k4 + 1                   # Column for the sample mean.

let k6 = k5 + 1                   # Column for the variance estimator.

random k3 c1-ck4;                 # Fills the columns c1-ck4 with k1

bern k1.                          # rows of '0' and 1'.

rmean c1-ck4 ck5                  # Row mean placed in column ck5.

let ck6 = ck5*(1 - ck5)           # Calculation of variance estimates.

let k10 = mean(ck6)

histogram ck6;                    # Histogram of the k1 estimates.

data;

etype 0;

reference 1 k2;

label 'true variance';

tsize 0.6;

tcolor 4;

marker k2 0;

type 29;

marker k10 0;

type 29;

color 2;

axlabel 1 'Calculated variance estmates';

tsize 0.7.
It is rather obvious that the A-estimator underestimates the variance. If you apply the correction above, the mean value (red triangle) will come closer to the 'true variance'. E.g. one simulation gave the mean to be 0.0667 (k10). If we multiply by 4 (n) and divide by 3 (= n – 1) we get the value 0.0889 that is close to the true value (0.090). 

Simulation with large n
This time we simulate the same situation but with a larger n, say 200.

let k1 = 0.10                     # p-value.

let k2 = k1*(1 - k1)              # The true variance.

let k3 = 10000                    # Number of simulated values.

let k4 = 200                      # The sample size (each row of data

                                  # is one sample).

let k5 = k4 + 1                   # Column for the sample mean.

let k6 = k5 + 1                   # Column for the variance estimator.

random k3 c1-ck4;                 # Fills the columns c1-ck4 with k1

bern k1.                          # rows of '0' and 1'.

rmean c1-ck4 ck5                  # Row mean placed in column ck5.

let ck6 = ck5*(1 - ck5)           # Calculation of variance estimates.

let k10 = mean(ck6)

histogram ck6;                    # Histogram of the k1 estimates.

data;

etype 0;

reference 1 k2;

label 'true variance';

tsize 0.6;

tcolor 4;

marker k2 0;

type 29;

marker k10 0;

type 29;

color 2;

axlabel 1 'Calculated variance estmates';

tsize 0.7.
With a much larger n we see that there is still an underestimation that can be corrected. However, in this case, dividing by (n – 1) (i.e. 199) and multiplying by n (200) will not give that much of a difference. Especially when we most likely will in our report use the standard deviation i.e. the square root of the variance estimate.

Conclusion

Sometimes we can find more or less natural estimators of a parameter. However, inventing esti​mators because they look good or are easy to calculate is a tricky business. In this case we managed to 'benchmark' with an old, well-known estimator and we found that our natural one was working well.  ■






©
Ing-Stat – statistics for the industry   www.ing-stat.nu 
Rev D . 2007-01-02 . 
(3)

_1065863703.unknown

_1065864016.unknown

_1065940233.unknown

_1065940249.unknown

_1065863824.unknown

_1065847699.unknown

