
 Why is there a ‘n – 1’ in the denominator?

When estimating the variance of a random variable the most common formula contains a ‘n – 1’ in the denominator. There is of course no difficulties in performing the calculations, even by hand, and in most cases there is no great difference, at least when ‘n’ is fairly large, whether we use ‘n – 1’ or ‘n’ in the denominator. Here we do the necessary mathe​matical derivation but see also the different summaries and the simulations below.

We start with the definition of the variance of the random variable X:
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where  is the expected value ( = E(X), ‘theoretical mean’) of the random variable X. ‘E’ stands for expectation and thus we can read the formula as

	the variance equals the expected, squared deviation from the theoretical mean


An estimator.  A reasonable estimator (calculated from the data) of the variance would be the following:
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Here n is the number of data values, Xi are the data values and
[image: image3.wmf]X

is the average. A first step is to develop the expression, which we start by doing a simple trick by adding zero. This is done by inserting + and – which of course does not change the expression:
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NB that we have used a few smaller tricks in the work with the formula:

· 
[image: image5.wmf]X

n

X

i

å

×

=

   and   
[image: image6.wmf]m

m

å

×

=

n

   giving that   
[image: image7.wmf])

(

)

(

m

m

-

×

=

-

å

X

n

X

i


Taking expectation.  The next step is to take the expectation of either side:
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Thus we see that the expected value of our estimator slightly underestimates the true value. We can fix this by rearrange the final result:
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   then becomes   
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If we now return to the original expression of our estimator we get:


[image: image11.wmf]2

2

2

1

)

(

)

(

1

s

=

÷

÷

ø

ö

ç

ç

è

æ

-

-

=

÷

÷

ø

ö

ç

ç

è

æ

-

×

÷

ø

ö

ç

è

æ

-

å

å

n

X

X

E

n

X

X

E

n

n

i

i


We have now proven that the estimator 
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 is an unbiased estimator of the variance.

	Note the difference:
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	Using the data and calculating an estimate of the vari​ance we can of course only hope to get an approxi​mation. Although this approximation usually becomes better with increased sample size.
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	When performing theoretical work using the expectation operator E, we write an equal sign.

	

	Note also:
	

	We have not based our reasoning on any specific probability distribution, as the result is general. Also, the result concerns the variance, not the standard deviation and only the expected value of the estimator, not its variance.

The variance of the estimator needs a further, and also more complicated theoretical treatment.


Summary I

· We have a definition of a parameter, in this case the variance:
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· We have an estimator of the parameter:
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· We develop the estimator:
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· We take the expectation and simplify the result:
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· We rearrange and thus get an unbiased estimator:
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· The expression within the brackets is often written
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On the following page we simulate this situation. 

Simulation I.  We use a uniform, continuous distribution over the interval [0, 1] to simulate the theoretical work above. In this distribution  = 0.5 and 2 = 1/12 (0.0833). We let the sample size n = 4 and every row in column c1-c4 is thus a sample.

let k1 = 5000                 # Number of samples.

random k1 c1-c4;              # k1 random numbers in c1-c4

uniform 0 1.                  # from a uniform distribution.

rstand c1-c4 c6               # The std of each sample stored in c6.

let c7 = c6**2                # The sample variance with ‘(n-1)’.

let c8 = c7*(4-1)/4           # The sample variance with ‘n’.

descr c7 c8                   # Calculates some numerical values.

The mean value of c7 is closer to the true value (0.0833) compared to the result in c8. However, the standard deviation in c7 is larger than the standard deviation of c8. 

This is typical when discussing estimators as we are fulfilling one good feature of the estimator (un​biasedness) some other feature (variance) of the estimator becomes worse.

As histograms.  The following commands create a histogram of the two columns. The red tri​angle is the true value and the blue one is the result of the estimator. The commands are written in two columns below in order to save space only.

	stack c7 c8 c9

let k1 = min(c9)

let k2 = max(c9)

gscale k1 k2;

smin k3;

smax k4.

let k11 = mean(c7)

let k12 = mean(c8)

layout

histogram c7;

data 0.10 0.80 0.58 0.95;

etype 0;

axlabel 2 '';

 axlabel 1 "Variance with 'n-1'";

tsize 0.7;

marker k11 0;

size 1.5;

color 4;

type 29;

marker 0.083 0;

size 1.5;

color 2;

type 29;

Scale 1;
min k3;

max k4;
tsize 0.6;

length 0.005;

HDisplay 0 0 0 0;

Scale 2;

length 0.005;

tsize 0.6;

HDisplay 0 0 0 0;
LDisplay 0 0 0 0;

nodt.
	histogram c8;

data 0.10 0.80 0.13 0.50;

etype 0;

axlabel 2 '';

axlabel 1 "Variance with 'n'";

tsize 0.7;
marker k12 0;

size 1.5;

color 4;

type 29;

marker 0.083 0;

size 1.5;

color 2;

type 29;

Scale 1;
min k3;

max k4;
tsize 0.6;

length 0.005;

HDisplay 0 0 0 0;

Scale 2;

length 0.005;

tsize 0.6;

HDisplay 0 0 0 0;
LDisplay 0 0 0 0;

nodt.

endlayout


	NB that the top histogram shows that the unbiased estimator (blue), i.e. the average, coincides good with the true value (red).

However the variation is larger in the top histogram. This is unfortunate: one good feature (unbiasedness) gives us here an estimator with larger variation!


Simulation II.  We do a second, larger simulation in order to see how the estimators behave in a larger sample of n = 50.

let k1 = 5000                 # Number of samples.

random k1 c1-c50;             # k1 random numbers in c1-c50

uniform 0 1.                  # from a uniform distribution.

rstand c1-c50 c52             # The std of each sample stored in c6.

let c53 = c52**2              # The sample variance with ‘(n-1)’.

let c54 = c53*(50-1)/50       # The sample variance with ‘n’.

descr c53 c54                 # Calculates some numerical values.

The mean value of c53 and c54 are both fairly close to the true value (0.0833). Also the standard deviation of c53 and c54 are close (NB that we have not yet discussed the size of the variation of the two estimators). This indicates of course that the difference between ‘n’ and ‘n-1’ has more of less disappeared with this larger sample size.

As histograms.  The following commands create a histogram of the two columns. The red tri​angle is the true value and the blue one is the result of the estimator. We see also that the histo​grams are more normally distributed. This is an effect of the larger sample size. The commands are written in two columns below in order to save space only.

	stack c53 c54 c55

let k1 = min(c55)

let k2 = max(c55)

gscale k1 k2;

smin k3;

smax k4.

let k11 = mean(c53)

let k12 = mean(c54)

layout

histogram c53;

data 0.10 0.80 0.58 0.95;

etype 0;

axlabel 2 '';

axlabel 1 "Variance with 'n-1'";

tsize 0.7;

marker k11 0;

size 1.5;

color 4;

type 29;

marker 0.083 0;

size 1.5;

color 2;

type 29;

Scale 1;
min k3;

maxi k4;
tsize 0.6;

length 0.005;

HDisplay 0 0 0 0;

Scale 2;

length 0.005;

tsize 0.6;

HDisplay 0 0 0 0;
LDisplay 0 0 0 0;

nodt.


	histogram c54;

data 0.10 0.80 0.13 0.50;

etype 0;

axlabel 2 '';

axlabel 1 "Variance with 'n'";

tsize 0.7;

marker k12 0;

size 1.5;

color 4;

type 29;

marker 0.083 0;

size 1.5;

color 2;

type 29;

Scale 1;
min k3;

max k4;
tsize 0.6;

length 0.005;

HDisplay 0 0 0 0;

Scale 2;

length 0.005;

tsize 0.6;

HDisplay 0 0 0 0;
LDisplay 0 0 0 0;

nodt.

endlayout




The variation of the estimator

Now when we have an estimator we should investigate its variance. It can be shown that the vari​ance of our estimator can be calculated using the following expression:
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The mk is the k:th central moment of the variable X and is defined in the following way:
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This means of course that the variance can be called the 2nd central moment. In order to mathe​matically calculate the values of the moments we need the following formula:
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In our example we use a continuous uniform variable over the interval a = 0 and b = 1. With the help of the computer program Mathematica we calculated the moments needed (we leave out the details. NB that in this example f(x) = 1). 
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    which gives    
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    which gives    
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If n = 4, as it was in our first example, we get the following result:
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In order to calculate this we program some lines in Minitab:

let k1 = 1/80                 # This is ‘m4.

let k2 = 1/12                 # This is ‘m2’.

let k3 = 4                    # This is ‘n’.

let k5 = (k1-k2**2)/k3 - 2*(k1-2*k2**2)/k3**2 + (k1-3*k2**2)/k3**3

let k6 = sqrt(k5)             # The standard deviation.

print k5 k6                   # k5 and k6 contains the variance and

                              # the standard deviation S2.

Now we need to compare k6 = 0.0378 with the StDev of c8 (i.e. the estimator with ‘n’ in the denomi​nator) after the first simulation above. The values coincide rather good.

If we recalculate the variation of S2 (our estimator) but this time with n = 50 as in the second simulation, we get k6 = 0.01059. A simulation II gives a StDev of c54 again very close to this result.

A note.  In going from the biased estimator (S2) to the unbiased estimator we multiplied by n/(n – 1). This factor (> 1) then also multiplies the standard deviation of our biased estimator and this explains why we get an estimator with a larger variation!

Summary II

This document showed initially that when we use ‘n – 1’ in the denominator we get a so-called unbiased estimator. This means that on the average, the estimator shows the true value. (A biased estimator misses the true value by a certain distance).

However, we have also shown that this unbiasedness has its price. When we get unbiasedness we instead get a larger variation in our estimator.

Further reading

There are a number of other documents that discuss different aspects of estimators. They can all be found on the homepage www.ing-stat.nu:

1. Taxi problem.doc

2. Estimating sigma, Normal.doc

3. Two estimators.doc
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